Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genes Nutr ; 17(1): 10, 2022 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-35842612

RESUMO

BACKGROUND: The development of type 2 diabetes mellitus (T2DM) is highly influenced by complex interactions between genetic and environmental (dietary and lifestyle) factors. While vitamin C (ascorbic acid, AA) has been suggested as a complementary nutritional treatment for T2DM, evidence for the significance and beneficial effects of AA in T2DM is thus far inconclusive. We suspect that clinical studies on the topic might need to account for combination of genetic and dietary factors that could influence AA effects on metabolism. In this study, we tested this general idea using a mouse model with genetic predisposition to diet-induced metabolic dysfunction. In particular, we utilized mice carrying a human orthologous GLUT10G128E variant (GLUT10G128E mice), which are highly sensitive to high-fat diet (HFD)-induced metabolic dysregulation. The genetic variant has high relevance to human populations, as genetic polymorphisms in glucose transporter 10 (GLUT10) are associated with a T2DM intermediate phenotype in nondiabetic population. RESULTS: We investigated the impacts of AA supplementation on metabolism in wild-type (WT) mice and GLUT10G128E mice fed with a normal diet or HFD. Overall, the beneficial effects of AA on metabolism were greater in HFD-fed GLUT10G128E mice than in HFD-fed WT mice. At early postnatal stages, AA improved the development of compromised epididymal white adipose tissue (eWAT) in GLUT10G128E mice. In adult animals, AA supplementation attenuated the predisposition of GLUT10G128E mice to HFD-triggered eWAT inflammation, adipokine dysregulation, ectopic fatty acid accumulation, metabolic dysregulation, and body weight gain, as compared with WT mice. CONCLUSIONS: Taken together, our findings suggest that AA has greater beneficial effects on metabolism in HFD-fed GLUT10G128E mice than HFD-fed WT mice. As such, AA plays an important role in supporting eWAT development and attenuating HFD-induced metabolic dysregulation in GLUT10G128E mice. Our results suggest that proper WAT development is essential for metabolic regulation later in life. Furthermore, when considering the usage of AA as a complementary nutrition for prevention and treatment of T2DM, individual differences in genetics and dietary patterns should be taken into account.

2.
Development ; 148(15)2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34323273

RESUMO

Vertebrate animals usually display robust growth trajectories during juvenile stages, and reversible suspension of this growth momentum by a single genetic determinant has not been reported. Here, we report a single genetic factor that is essential for juvenile growth in zebrafish. Using a forward genetic screen, we recovered a temperature-sensitive allele, pan (after Peter Pan), that suspends whole-organism growth at juvenile stages. Remarkably, even after growth is halted for a full 8-week period, pan mutants are able to resume a robust growth trajectory after release from the restrictive temperature, eventually growing into fertile adults without apparent adverse phenotypes. Positional cloning and complementation assays revealed that pan encodes a probable ATP-dependent RNA helicase (DEAD-Box Helicase 52; ddx52) that maintains the level of 47S precursor ribosomal RNA. Furthermore, genetic silencing of ddx52 and pharmacological inhibition of bulk RNA transcription similarly suspend the growth of flies, zebrafish and mice. Our findings reveal evidence that safe, reversible pauses of juvenile growth can be mediated by targeting the activity of a single gene, and that its pausing mechanism has high evolutionary conservation.


Assuntos
RNA Helicases/genética , RNA/genética , Peixe-Zebra/genética , Alelos , Animais , Feminino , Inativação Gênica/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Precursores de RNA/genética , Ribossomos/genética , Transcrição Gênica/genética
3.
PLoS Genet ; 16(5): e1008823, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32453789

RESUMO

The development of type 2 diabetes mellitus (T2DM) depends on interactions between genetic and environmental factors, and a better understanding of gene-diet interactions in T2DM will be useful for disease prediction and prevention. Ascorbic acid has been proposed to reduce the risk of T2DM. However, the links between ascorbic acid and metabolic consequences are not fully understood. Here, we report that glucose transporter 10 (GLUT10) maintains intracellular levels of ascorbic acid to promote adipogenesis, white adipose tissue (WAT) development and protect mice from high-fat diet (HFD)-induced metabolic dysregulation. We found genetic polymorphisms in SLC2A10 locus are suggestively associated with a T2DM intermediate phenotype in non-diabetic Han Taiwanese. Additionally, mice carrying an orthologous human Glut10G128E variant (Glut10G128E mice) with compromised GLUT10 function have reduced adipogenesis, reduced WAT development and increased susceptibility to HFD-induced metabolic dysregulation. We further demonstrate that GLUT10 is highly expressed in preadipocytes, where it regulates intracellular ascorbic acid levels and adipogenesis. In this context, GLUT10 increases ascorbic acid-dependent DNA demethylation and the expression of key adipogenic genes, Cebpa and Pparg. Together, our data show GLUT10 regulates adipogenesis via ascorbic acid-dependent DNA demethylation to benefit proper WAT development and protect mice against HFD-induced metabolic dysregulation. Our findings suggest that SLC2A10 may be an important HFD-associated susceptibility locus for T2DM.


Assuntos
Tecido Adiposo Branco/metabolismo , Ácido Ascórbico/metabolismo , Metilação de DNA , Diabetes Mellitus Tipo 2/genética , Dieta Hiperlipídica/efeitos adversos , Proteínas Facilitadoras de Transporte de Glucose/genética , Células 3T3-L1 , Adipogenia , Adulto , Idoso , Animais , Proteínas Estimuladoras de Ligação a CCAAT/genética , Metilação de DNA/efeitos dos fármacos , Diabetes Mellitus Tipo 2/metabolismo , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Hemoglobinas Glicadas/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Mutação , PPAR gama/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...